On the feedback vertex set polytope of a series-parallel graph
نویسندگان
چکیده
The minimum weight feedback vertex set problem (FVS) on series-parallel graphs can be solved in O(n) time by dynamic programming. This solution, however, does not provide a “nice” certificate of optimality. We prove a min-max relation for FVS on series-parallel graphs with no induced subdivision of K2,3 (a class of graphs containing the outerplanar graphs), thereby establishing the existence of nice certificates for these graphs. Our proof relies on the description of a complete set of inequalities defining the feedback vertex set polytope of a series-parallel graph with no induced subdivision of K2,3. We also prove that many of the inequalities described are facets of this polytope.
منابع مشابه
Modelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملThe Steiner tree polytope and related polyhedra
We consider the vertex-weighted version of the undirected Steiner tree problem. In this problem, a cost is incurred both for the vertices and the edges present in the Steiner tree. We completely describe the associated polytope by linear inequalities when the underlying graph is series-parallel. For general graphs, this formulation can be interpreted as a (partial) extended formulation for the ...
متن کاملWhen does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
متن کاملEternal m- Security Subdivision Numbers in Graphs
Let be a simple graph with vertex set and edges set . A set is a dominating set if every vertex in is adjacent to at least one vertex in . An eternal 1-secure set of a graph G is defined as a dominating set such that for any positive integer k and any sequence of vertices, there exists a sequence of guards with and either or and is a dominating set. If we take a guard on every ver...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Optimization
دوره 6 شماره
صفحات -
تاریخ انتشار 2009